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We consider dissipative mechanisms involved in resonance vibrations of gas in a closed pipe. Using analysis 

of  a resonance curve as an example, we show the existence of  four regimes differing in the mechanism of 

dissipation. We determine their boundaries, as well as lay a foundation for the procedures used to calculate 

the amplitude of vibrations within these intervals. Comparison of calculating formulas with experiments 

conducted by various authors is made. 

Nonlinear vibrations in gas-filled tubes are excited mainly by a harmonically moving piston [1-6 ]. The 

regime in which the frequency of the vibrations of the piston approaches one of the resonance frequencies of the 

gas column is of greatest interest. The amplitude of pressure (speed) oscillations under these conditions is a complex 

function of the frequency and amplitude of the displacement of the piston, physical properties of the medium, and 

of the mechanisms of the dissipation of the energy supplied by the piston. At a distance from resonance, vibrations 

are described by the laws of linear acoustics [4 ]. Near resonance, there is a region of frequencies where vibrations 

become discontinuous: periodic shock waves are generated. Some authors assume that in this region the work of 

the piston goes for the generation of harmonics (nonlinear losses) and absorption in a laminar boundary layer near 

the wall [2-4]. At the same time, in some experiments a turbulent regime of vibrations was observed [1, 5]. 

Subsequently it turned out that transition to turbulence in a closed pipe was governed by a criterion that was an 

analog of the Reynolds number based on the acoustic boundary layer thickness [6 ]. We also note that in the regions 

of frequencies adjacent to the region of discontinuous vibrations the solution is described by continuous functions. 

This region may be termed the region with a comparatively weak nonlinearity. Then, on the axis of frequencies we 

can indicate several intervals within which the mechanism of dissipation remains invariable, while the transition 

from one interval to another is accompanied by a change in the mechanism of dissipation. 

Below we attempt to analyze the resonance curve in order to determine the intervals and the amplitudes 

of vibrations within them. 
To determine the region of discontinuities, the inequality 

3 < 4 / ~ ,  (1) 

should be satisfied [7 ], where c3 = 2zcA(lp/2L) 1/2, lp = c~/eWVl is the distance of the formation of a discontinuity; 

A is determined from the relation ~A = koL - kL; here ko = O9o/co, k = a~/co; the subscript "0" refers to the exact 

resonance. If we take into account that with this resonance koL = ~, then A = (koL - k L ) / ~  is the relative 

maladjustment. Let us introduce the absolute maladjustment D(kL) = koL - kL; then we can show that Eq. (1) is 

equivalent to the relation 

IA (kL)[ < 2 [  /]1/2 
kL ~ (x + 1) , (2) 

from which we can easily obtain the values of (kL)c and (kL)c, given in Fig. 1, where the resonance curve is 
presented. They correspond to the boundaries of the interval kL within which discontinuities are formed. Under 
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Fig. 1. Relationship k L -  U A (resonance curve). Points, experiments 

curves, calculations by formula (2). 

[51; 

the conditions of work [5], where x -- 1.4, l /L  = 8.12.10 -3, we have (kL)c -- 2.88, (kL)c, = 3.47. The agreement 

with the experiment is within 1%. 

To determine the boundaries of the acoustic region, it is necessary to have a solution that takes into account 

the second approximation. Let us avail ourselves of the expression from [7 ]: 

V ( a  t) = M sin k ( L -  a) sin cot eM2k ( L -  a) , - cos 2k (L - a) cos 2cot, (3) 
sin kL 4 sin 2 kL 

where M = col~co; a is the Lagrangian coordinate of a particle; U is the dimensionless velocity. Let us consider 

expression (3) at the point a -- L - zc/(2k); here the first harmonic has the maximum amplitude 

Ulm = M/s in  kL,  (4) 

while the amplitude of the second harmonic takes the value U2 -- e /8 -  (M2Jr/sin2kL). If we impose the requirement 

that on the boundary  of the acoustic region the amplitude of the second harmonic should not exceed 2% of the 

first one (a conventional requirement to the frequency of a signal in radioelectronics), then the boundaries of the 

acoustic region can be found from the condition 

kL 4 (5) 
I sin kLI - 2.5 Jr e (l/L) " 

If we assume that,  as before, I /L  = 8.12.10 -3, then (kL)A = 2.61, (kL)a, -- 4.02. In Fig. 1 the acoustic regions will 

be located to the left of the point A and to the right of the point A'. In these regions we may discard the second 

term on the r ight-hand side and calculate the maximum amplitude from formula (4). 

It should be noted, however, that expression (4) does not take the wall absorption into account. It can be 

accounted for if we introduce the complex wave number k* = k[(1 +/6 ' )  + / f l "  ], where t5' determines dispersion 

and /6"  absorption. In the case of high-frequency vibrations H = R wV~-~v >> 1, where/6 '  = - /6"  = 0.5(1 + (k - 1) 

/ V-P-F)H-1 << 1 (Pr is the Prandtl  number  [8 ]). Then, instead of Eq. (4) we have 

M (6) 
U l m  = 

X / cos 2 kL sh 2/6 + sin 2 RL ch 2/6 

where/6 = kLfl' [9 I. 

The  transition to turbulence is determined by the criterion A c = 2UA/(cov) 1/2, where UA is the amplitude 

of the vibrations of speed. In closed pipes turbutization sets in when Ac >- 400, if the boundary  layer is thin in 

comparison with the pipe radius, i.e., when H >> 1 [6 ]. The occurrence of turbulence during vibrations is a local 

phenomenon: in a pipe there  may coexist portions of laminar and turbulent motions. In view of the fact that in a 
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closed pipe the antinode of speed is located near the middle of the pipe, turbulence also appears primarily there 

[6]. 

By virtue of the fact that under the conditions of work [2 ] the maximum possible magnitude of A C does 

not exceed 380, and under the conditions of work [1 ] it is not smaller than 2300, then in the former case the flow 

seems to be laminar at all of the frequencies of piston vibration, while in the second case it is turbulent. Thus, 

experimental facilities should be subdivided into those in which laminar flow is preserved and those in which 

turbulence is generated. 
In the facilities of the first type the amplitude in the region of discontinuities can be calculated by the 

procedure suggested in [2 ], whose idea is that the energy supplied by a piston into a pipe is equal to the losses on 

the pipe wall and for the generation of harmonics: 

( E p )  = ( E w )  -t- ( E n )  , (7) 

where <Ep> is the amount of energy averaged over time supplied by the piston to the pipe per unit time; </~w >, 

<En> are the rates of energy dissipation due of the wall losses and nonlinear losses, respectively. Assuming that 

the amplitude of the oscillations of pressure is identical over the entire pipe length, we can obtain [2 ]: 

l , Ew) 1 3 1 3 <Ep)=PoC3ozUm ( ~flPoCoU2m, (En)= (x + l)PocoU3m, (7') 

where Um= 2UA is the magnitude of the discontinuity of the speed related to the speed of sound. Substituting Eq. 

(7') into Eq. (7), we obtain an expression for UA that coincides with the experiment qualitatively, but differs from 

it by a factor of two. Allowance for the real form of vibrations leads to the appearance of the factor 2 /3  in the 

expression for <Ep> [1 ]. This is, however, insufficient for explaining the substantial difference between the theory 

and experiment. 
Let us consider the correctness of the expression for <Ew >. The wall losses are in effect thermoacoustic 

heat fluxes [10 ]. They lead to nonuniform heating of the pipe wall. In the case of harmonic vibrations the heat 

flux on the wall has the form 

1 2 
( ql ) = ~P0 Co U~I x/2vw (A cos 2 (kx + ao) + B ch 2fl*), 

where U1 is the dimensionless amplitude of vibrations; A, B, a0,/3* are constants. In the case of exact resonance in 
L 

a closed pipe ao --" 0,/3* =/3 << 1, B = (to - 1)/,f-P-r + 1. We can easily see that Q~ = 2arRf < qa >dx are the wall losses 
0 

and Q1 = Q~/rcR2 are the losses per unit cross-sectional area of the pipe. Having performed integration, we obtain 

>: 4. 
In the case of discontinuous vibrations of the form [11 ] 

V = U A n (1 + a) sin no)t, 
n = l  

where a -- 1.57 is the distance of the stabilization of a sawtooth wave, assuming that the contributions of thermal 

effects of separate harmonics o)n = no) are additive [2 ], we can obtain 

B ( ew ) C2Po n 3/2 (1 + a) 
c03 n~__ 1 1 U2A. (8) 

By virtue of the fact that the sum of the series is equal to unity with accuracy to 1%, we write 

Comparison of Eq. (8') with <J~w > in Eq. (7') shows that they differ by a factor of four. 
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Let us consider nonlinear losses. The rate of energy dissipation in a weak shock wave is equal to <En > = 

- T O < S >  [12], where To is the temperature of the medium prior to the jump; < 3 >  is the rate of change in the 

total entropy of the system; < > denotes averaging over the period of vibrations. Let us express < 3 >  in terms of 

the jump in the specific entropy for the period of vibrations AS: 

v 
( S ) = ~ y AS  d V ,  (9) 

0 

where Po is the density; r is the period of vibrations. Owing to [12 ] 

A S =  
1 x + l  3 

2 2 ( P 2 - - P l )  , 
12To PO x Po 

where (P2 " Pl) is the pressure jump, and P0 is the mean pressure in the pipe, for the unit cross-sectional area we 
obtain 

( E n ) =  1 tc+ 1 L 
2 2 f (P2 -- P l )  3 dx.  (10) 

12~: x PO o 

In the case of a constant amplitude of vibrations along the length of the pipe, with account for r = 2L/co,  
2 

xpo = poco, P2 - P1 = UmPoC 2, it is possible to find a magnitude of <J~n > half as large as <En > in Eq. (7'). 

The assumption about the constant amplitude of vibrations is not fulfilled in experiments. Thus, in the 

tests of [5 ] the amplitude ratio of pressure near oscillations the piston and in the middle of the pipe amounted to 

4, while in [13 ] it was equal to 4.3. Since no analytical relationships have been obtained as yet for the vibrations 
of amplitude along the length of the pipe, we processed the experimental data of [5 ]. This processing made it 
possible to express the rate of nonlinear dissipation in the form 

(A~n > x +  1 3 
- mPocoUam 3 

(11) 

where for the conditions of [5 ] m = 0.355. With account for the corrections made, we can write a formula for 
computing the amplitude of vibrations: 

m (x + 1) L - ~ '  (12) 

where 7 = 3 f l / 4 m ( x  + 1). 

The dependence of the dimensionless amplitude of pressure oscillation on the relative amplitude of the 

displacement of the piston in a laminar regime of vibrations is presented in Fig. 2. Here, the points represent the 

experimental results of various authors; the solid line is the result of calculation by expression (12) with account 

for 6 p / p o  = xUa.  The parameterfl  corresponds to the conditions of the setup in [2 ]. It is seen that all of the points, 
except for one, are located on the calculated line. 

In the region of weak nonlinearity (the arcs A C  and C'A'  in Fig. 1), the solution is continuous and is 

described by the expression of form (3). At the point a = L - Jr /2k the amplitude ratio of the harmonics (7 = U2/U1 

is determined by the formula 

e srkL l 
( 7 - -  

8 s i n  k L  L " 

By virtue of the fact that on the boundary of the region of discontinuities sin kL  -A(kL) ,  where A(kL) is 
determined by relation (2), the value of a may become larger than 

~ = + 1) (13) 

The value of (7m does not exceed 5% at I / L  = 8.12.10 -a. Further we can show that the contribution of the 
second harmonics to the resultant amplitude will be still smaller, therefore for the calculation of the amplitude we 
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Fig. 2. Dependence of the dimensionless amplitude of pressure oscillations 

6p/po on the relative amplitude of the displacement of a piston l /L  in a 

laminar mode of vibrations. 

Fig. 3. Dependence of the dimensionless amplitude of pressure oscillations 

6p/po on the relative amplitude of the displacement of the piston l /L  in a 
turbulent regime of vibrations. 

can use Eq. (4) or, with account for the wall absorption, Eq. (6). In Fig. 1 the points represent  experiments [5 ]; 

the solid curves represent calculation by formula (6). The agreement is also good. 

Let us determine the band of frequencies within which the flow is turbulent. If turbulence appears beyond 

the boundaries of the region of discontinuous vibrations, then for the solution of the problem it is sufficient to 

express the amplitude of vibrations in terms of A c and substitute the expression obtained into Eq. (4). Then  

- A c  ~ /  ~L ) " (14) 
sin kL 2 

Solution of (14) for kL yields roots the first two of which determine the boundary of the transition. Under  

the conditions of work [5], i.e., A c = 400, l = t3 .8 .10  -3 m, L = 1.7 m, we have (kL)B = 2.71, (kL)B, -- 3.64 (Fig. 

1). When (kL)B > (kL)c, (kL)B, < (kL)c,, determination of the points of transition seems.to be difficult. In this 

case we can solve the problem of the regime of vibrations if we compare the amplitude of the vibrations expressed 

in terms of A c with its value from relation (12) or from the experiment. If the first one is higher than the second, 

then in the region of discontinuities vibrations are realized in a laminar regime and in the opposite case in a 

turbulent regime. 

However, it should be emphasized that the criterion of transition depends substantially on the state of the 

wall surface, foreign inclusions, etc. Thus,  the introduction of the probe of a thermoanemometer  into the boundary 

layer led in [6 ] to the reduction of Ac from 400 to 300. Apparently, it is possible to apply special measures to attain 

higher values of Ao  Thus,  in [14 ] the magnitude A c -- 800 was attained. When analyzing the regime of vibrations, 

it is advisable to take this circumstance into account, i.e., only those vibrations are to be considered turbulent in 

which the experimental amplitude of the vibrations is higher than the amplitude calculated from the Condition Ac 
= 800. 

Table 1 lists the parameters of the setup (the 1st and 2nd columns), dimensionless amplitude of pressure 

oscillations (3rd column), dimensionless amplitude of pressure oscillations during transition to turbulence (4th 

column), and analysis of the regime (5th column). It is seen that the inference about the regime of vibrations can 

be made with certainty. 
To obtain an expression similar to Eq. (12), it is necessary to determine turbulent  losses at the wall. 

Investigation of turbulent vibrating flows was the concern of a number of works that can be found in review [ 14 ]. 

It is found that turbulence with vibration has a high-frequency character; moreover, the lowest frequency of 

pulsations can exceed the frequency of vibrations by an order  of magnitude [ 1 ]. The  compressibility of the medium 
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TABLE 1. Experimental Data 

Reference 

[11 

[2] 

[31 

[51 

[151 

[16] 

[13] 

[17] 

[18] 

1.103, m 

39 

0.2-2.0 

55 

13.8 

3.0 

3.4 

3.2 

1.8 

49 

L, m 

2.4-14 

1.5 

3.4 

1.7 

3 

12 

1.7 

1.7 

3.2 

Pm/PO 

0.35-0.10 

0.018-0.08 

0.36 

0.20 

0.07 

0.10 

0.14 

0.07 

0.41 

(P/PO)tr" 102, 

A c = 800 

(14.74-5.58) 

15.2 

11.3 

14.4 

10.8 

5.4 

14.4 

14.4 

11.7 

Regime of 
vibrations 

Turbulent 

Laminar 

Turbulent 
t l  

Laminar 

Turbulent 

Laminar 
H 

Turbulent 

H 

169-64 

133 

43 

6O 

127 

does not exert a substantial effect on turbulence [14]. If we integrate the boundary layer equation for an 

incompressible fluid over the pipe cross section, then the pressure losses Ap can be expressed as [14 ]: 

Ap dU 4r w (15) 
t - + - - Y  - '  

When all the quantities entering into Eq. (15) vibrate in identical phases, the flow can be considered to be 

quasistationary. Analysis of Eq. (15) with account for phase shifts shows that, when 0 < H _< 0.94, the flow can 

be considered quasistationary and, when H _> 20, the inertia term in Eq. (15) substantially exceeds turbulent losses 

at the wall [14]. It should be noted that the condition H < 0.94 is more rigorous than the expression z = 

4Rca/2sU [19 ]. The fifth column of Table 1 presents the value of H under the conditions of experimental works 

discussed in the present article. It is seen that all the data were obtained for H > 20. 

In the case of vibrating flows, the rate of regular vibrations is superimposed by turbulent pulsations, i.e., 

u = U(t) + u', v = V(t) + v', where u and v are the axial and normal components of the speed, respectively; U and 

V are the regular portion of the vibrations of speed, therefore the turbulent friction z- t contains three components 

- Tt = po Uv' + po Vu' + po u'v' . 

In the case of a high-frequency turbulence, when regular components have no time to change substantially, the 

first two terms vanish, then •t = -pou 'v ! ,  rt is determined in the same way as in a steady flow. This conclusion 

was verified experimentally [14 ]. 

To describe turbulent losses, we shall introduce the turbulent coefficient of absorption fit. The procedure 

of its determination consists in the linearization of the expression ~w -- (2s/8)po-U 2.Then [20 ] 

2~L _ (16) 
flt = - ~  U . 

Let <Ew>t be the rate of energy dissipation due to turbulence. By defination [12] <Ew> = fl2co~:, <Ew>t--  

flt2coE, where ~7 is the mean density of energy in the pipe, we have <Ew>t = ( f l t / f l )<Ew>t and, with account for 

Eq. (8'), <Ew>t = 1/:~8#oc~U2A. Having substituted this expression into the energy balance equation (6), we easily 
obtain the expression 

U A = 4  2 s ( L / R ) + 4 m ( x +  1) 

for calculating the amplitude of vibrations in a turbulent regime. For rough pipes 2s 
In the case of smooth pipes 2s 

(17) 

const, and Eq. (17) is final. 
= 0.316Re~ -~ Res = -Ud/v. W e  find the amplitude of vibrations from the equation 

4m (x + 1) ~A + CU1A "75 -- 16 ( l /L )  = 0, (18) 
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where C = 0.316(cod/v)-~ 2S(L/R), m = 0.355. 

The dependence of the dimensionless amplitude of pressure oscillations cSp/p 0 on the relative amplitude of 

piston displacement I / L  is presented in Fig. 3, where the points represent the experimental results of various 
authors, the solid curve represents theoretical calculation by formula (18) with the parameters of the setup of [1 ], 
the dashed line shows the calculation in conformity with Eq. (17) at )l s = 0 (with account for nonlinear losses 

alone). It is seen that all the experimental points (except for one) group around the solid curve. We can note that 

the most substantial contribution (up to 60%) is made by the wall region at relatively small values of l /L .  As 
l / L  increases, its influence decreases to 9-10% . 

The work was carried out under a grant from the Russian Fundamental Research Fund. 

N O T A T I O N  

L, length of the pipe; R, radius of the pipe; d, diameter of the pipe; v, coefficient of kinematic viscosity; 

co, speed of sound in an unperturbed gas; e -- (r + 1)/2, parameter of nonlinearity; K -- Cp/Cv, where Cp and Cv are 
the specific heats at a constant pressure and constant volume, respectively; co, cyclic frequency; k = co~co, wave 

number; l, amplitude of the vibrations of piston; M = col~co, Mach number; Re, Reynolds number; v, amplitude of 
the speed of the piston; U, dimensionless rate of vibrations; Ulm, maximum value of the amplitude of the 1st 

harmonic; UA, amplitude of speed oscillations; U, pipe cross-section-averaged speed; H = R ~X/-~/-~v, frequency 
1/z parameter; A c = 2Un/(a~v) , the Sergeev number; ~w, shear stress on the wall; )is, coefficient of hydraulic 

resistance; fit, turbulent coefficient of absorption. Subscripts 1 and 2 relate to the 1st and 2nd harmonics, 

respectively. 
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